

Renognative die 22 man faminales

Success Cultivates Success

Atomic Force Technology

- The AFP characterizes the electrical properties of an individual device using measured topography as an aid to probe placement.
- A constant tip-sample force is maintained throughout the measurement making the AFP non-destructive and easy to use.
- Why an AFM:
 - force feedback
 - non-destructive
 - non-contaminating
 - current imaging (PicoCurrent™)
 - scanning capacitance

Success Cultivates Success

DC Probing

n-contact diode ramp

pull-up transistor

pull-down transistor

p-contact diode ramp

threshold voltage characteristics

Success Cultivates Success

PicoCurrent (Fault localization)

Find failures without the need to probe

Topography

PicoCurrent

Success Cultivates Success

PicoCurrent More Sensitive c.f. PVC

Success Cultivates Success

AFP DC Measurements at Contact Post CMP

Success Cultivates Success

Current Imaging Is Not Applicable To SOI

The presence of a buried dielectric layer inhibits current flow

- The lack of PicoCurrent[™] data with SOI devices makes localization of soft fails more difficult.
- When used as a contrast mechanism, capacitance data brings back the ability to identify contacts.
- Note the green contact in a sea of blue; a sure indication of a soft fail

Success Cultivates Success

Roadmap to 16nm: High Sensitivity Levers, sharper tips

Mirrored levers have higher sensitivity

- 6mV/nm c.f. 1mV/nm with standard levers
- Better force control
 - Smaller reflected laser spot
 - 3x higher sensitivity
 - Shorter lever
 - 2x higher sensitivity

- Sharper than 45nm
- Conductive
- Contamination free

Success Cultivates Success

High Sensitivity Levers

Smaller reflected LASER spot at the photo-

Mirrored levers have:

- Lower non-specula reflections
- Lower optical interference
- Higher lever sensitivity

Success Cultivates Success

Issues When Using High-Sensitivity Levers

The high-sensitivity levers reveal the limits of the current MPII design

- Observations
 - Cantilever goes into resonance
 - No stable imaging
 - excessive force
 - tip/sample damage
- System Noise Too High

 MPII does not support the feedback bandwidth required for the preservation of "Ultra-Sharp" probes

Success Cultivates Success

MPII Noise Spectrum

Success Cultivates Success

MPII vs. MPIIb

	MPII	MPIIb
Maximum number of heads	6	
XY scan range	24um	
XY positional accuracy	5nm	
Electrical resolution	<1p A	
Imaging modes	Topography, Pico Current, Scanning Capacitance	
Smallest accessible technology node	<32nm	16nm (22nm demonstrated)
Topographical resolution (Z)	5nm	2nm
Lever Sensitivity (typical)	1mV/nm	6mV/nm
Settling time after installing probes (typical)	2hrs	15min
Imaging force (typical)	0.24uN	0.025uN
Probe life (typical at 32nm node)	25 images + probing	150 images + probing
Stability	> 10min IV curve on 32nm	>10min IV curve on 22nm
Compatible probe types	AFP-065, AFP-045	AFP-065, AFP-045, AFP-035M

Success Cultivates Success

22nm Topography

MPII vs. MPIIb

MPII MPIIb

Success Cultivates Success

