

Case study of failing device using BCB/Cu technology

The component is an RF product used in the transceiver module of cellular phones, and is made up of inductors and capacitors.

- The component contains:
 - A glass substrate
 - 2 copper metallization layers
 - Several dielectric layers composed of BCB, an organic isolator

 The component is encapsulated in an SO20 type package made of plastic molding compound

Localization of defect

- Backside polishing, followed by OBIRCh, which detected low ohmic short
- To determine cause of failure would be necessary to access the frontside of the die without damaging the BCB dielectric layers or the Cu lines

Physical access to the defect:

- Standard Method:
 - Access front side of the die by wet chemical etch of the plastic molding compound
- Result:
 - Molding compound removed, but the BCB layers have been etched as well and the copper lines have been detached and/or etched away

Physical access to defect using a new approach: Laser + Plasma

Laser pre-decapsulation

 \longrightarrow

SESAME 1000, DigitConcept

Plasma RIE assisted by (CO2) filler blast

FA2000P, BSET EQ

	Gaz	Puissance	Pression
Prog 1 ^a	190cm ³ CF ₄ ; 495 cm ³ O ₂	200W	4350mT
Prog 2 ^a	$47 \text{ cm}^3 \text{ CF}_4$; $495 \text{ cm}^3 \text{O}_2$	200W	4350mT

• Results:

- The plastic molding compound has been removed
- BCB layers and Cu lines still intact

Conclusions

- Conclusion after decapsulation:
 - The defect was found not to be at the surface of the die, but between two metal layers
 - Defect found after further RIE plasma etch of BCB layers (2 Cu lines fused by heating).

- Conclusions on methodology:
 - Standard method not applicable due to introduction of new materials
 - Laser + plasma etch has made it possible to access this type of device from front side without damage

