

Coupling Test and Optical Techniques to improve functional logic failure localization

Dr. Aziz Machouat STMicroelectronics Rousset (France)

Motivations

Limits of currents techniques used for functional logic failure localization :

ATPG Diagnostic

OBIRCh List of localization $(1\mu^2)$ candidates **TEM lamella 1**10 Net 1 Net 2 Failing Net 3 Length of contact Length of Net 4 net : 500µm net : 600µm SRAM layout of 90nm technology node, 8 transistors, 12 contacts Net 42

Alternatives techniques are needed

Optical Localization Techniques Workshop, Toulouse, January 27th, 2009

Optical techniques

Agenda

- I. Presentation of a methodology for improving accuracy of functional logic failure localization :
- 2. Correlation of static and dynamic optical techniques for the same defect in order to improve defect localization
- 3. Effect of physical defect on voltages-periods shmoos plots

3/19

1. Methodology for improving accuracy of functional logic failure localization

The implemented method combines ATPG diagnostic and optical techniques :

ASIC in 130nm technology node, yield loss in « Scan stuck-at » test

ATPG diagnostic :

<pre>#failing_pat=278, #failures=763, #defects=1, #faults=4, CPU_time=9.48 Simulated : #failing_pat=278, #passing_pat=900, #failures=763</pre>				
Fault candidates for defect 1: stuck fault model, #faults=4, #failing_pat=278, #passing_pat=900				
match=44.43%, #explained patterns: <failing=137, passing="795"> sa1 DS s850_core_0/idp_top_0/smia_scaler_0/vscaler_0/v_phase_mgr_0/r460/U1_2/A (F_FA1LL)</failing=137,>				
match=41.06%, #explained patterns: <failing=127, passing="781"> sa0 DS s850_core_0/idp_top_0/smia_scaler_0/vscaler_0/v_phase_mgr_0/r460/U1_2/A (F_FA1LL)</failing=127,>				
match=25.11%, #explained patterns: <failing=2, passing="822"> sa0 DS s850_core_0/idp_top_0/smia_scaler_0/vscaler_0/v_phase_mgr_0/r460/U1_3/CI (F_FA1LL) sa0 s850_core_0/idp_top_0/smia_scaler_0/vscaler_0/v_phase_mgr_0/r460/U1_2/CO (F_FA1LL)</failing=2,>				
match=23.76%, #explained patterns: <failing=12, passing="754"> sa1 DS s850_core_0/idp_top_0/smia_scaler_0/vscaler_0/v_phase_mgr_0/r460/U1_3/CI (F_FA1LL) sa1 s850_core_0/idp_top_0/smia_scaler_0/vscaler_0/v_phase_mgr_0/r460/U1_2/CO (F_FA1LL)</failing=12,>				

6 faults

Localization of nets at layout level

Localization by static optical technique OBIRCh :

OBIRCh image

Overlay between OBIRCh and circuitry images

Correlation between ATPG diagnostic and OBIRCh localization :

List of nets passing through the OBIRCh spot

Xs850_core_0/Xidp_top_0/Xsmia_scaler_0/Xvscal er_0/Xv_phase_mgr_0/n883 Xs850_core_0/Xidp_top_0/Xsmia_scaler_0/Xvscal er_0/Xv_phase_mgr_0/Xr460/XU1_2/gnd Xs850_core_0/Xidp_top_0/Xsmia_scaler_0/Xvscal er_0/Xv_phase_mgr_0/even_phase[1] Xs850_core_0/Xidp_top_0/Xsmia_scaler_0/Xvscal er_0/Xv_phase_mgr_0/Xr460/XU1_2/CI Xs850_core_0/Xidp_top_0/Xsmia_scaler_0/Xvscal er_0/Xv_phase_mgr_0/Xr460/XU1_2/A

3 nets

List of nets proposed by the ATPG diagnostic

Xs850_core_0/Xidp_top_0/Xsmia_scaler_0/Xvscal er_0/Xv_phase_mgr_0/Xr460/XU1_2/B

Effectiveness of the methodology :

Layers to observe	Localization by ATPG diagnostic	OBIRCh localization	Localization by the methodology
Active	2	2	0
Polysilicon	3	3	1
Contacts	7	4	1
Metal 1	6	3	1
Metal 2	6	1	0
Metal 3	5	2	0
Metal 4	2	4	0
Total	31	19	3

The methodology allows to focus the physical analysis only on 3 interconnection layers

Physical analysis : Delayering, Cross-section & TEM

- On the same defect, we can use static and dynamic techniques based on test results
- By doing so, localization can be improved by combining the two approaches

How to define test pattern for static and dynamic techniques :

Tests for operating points P1 and P2 allow to define shmoo plot shape P1 = Vdd max/Period max P2 = Vdd min/Period min

 \bigcirc

New flow for functional failure localization :

2. Case study : Correlation of static and dynamic optical techniques

ASIC in 130nm technology node, yield loss in « Scan stuck-at » test

2. Case study : Correlation of static and dynamic optical techniques

Correlation of optical techniques :

1-2. Conclusion – Methodology for improving accuracy of functional logic failure localization

- A methodology for improving functional logic failure localization have been presented. This methodology combines optical techniques and ATPG diagnostic.
- In this methodology static and dynamic optical techniques can be used for the same defect based on test result.
- This approach can be very useful to improve defect localization.

3. Effect of defect in periods-voltages shmoo plot

- The study was performed using spice simulations
- The simulated structure is a 4 inverters chain
- Simulated defect : pull-up, pull-down, intra-cell bridge, serial resistance, open circuit

Shmoo plot of reference circuit

3. Effect of « pull-up » defect type

- For R < 1,25KO, « hard defect »</p>
- For R > 5KO, the defect does not affect the functionality of the sircuit

For 1.25KO < R > 5KO, a bass/fail border is observed in the shmoo plot

A low variation of defect resistance causes a large variation in the shmoo plot

3. Conclusion - Effect of defect in periodsvoltages shmoo plot

- **Bridge defect type :** A low variation of the defect resistance generates a high variation in shmoo plot. Statistically, the defect will not affect the functionality of the circuit or it can not be localized by dynamic optical techniques.
- Resistive path defect type : There is a pass/fail border for a wide range of defect resistances. So, dynamic techniques are more appropriate to this type of defect.

