

"Dynamic Laser Stimulation for defect localization and IC characterization"

K. Sanchez (CNES), P. Perdu (CNES), M. Sienkiewcz (IMS-Freescale), A. Deyine (IMS-Thales) CNES - 18, Avenue Édouard Belin, 31401 Toulouse Cedex 9, France

The needs for Dynamic Laser Stimulation

Laser stimulation principle and effects

Thermal Laser Stimulation (TLS)

Photoelectric Laser Stimulation (PLS)

Dynamic Laser Stimulation for IC analysis and defect localization

D-TLS, D-PLS, SDL, RIL, T-LSIM, LADA, ...

Dynamic Laser Stimulation, from defect localization to IC characterization

The needs for Dynamic Laser Stimulation

3

- IC with "soft defect" or marginalities
 - Limited functionality: temperature, voltage, frequency, power, etc...
- Device which can not be statically activated
 - Ring oscillator, « Watch dog », …

Increase of the IC temperature

Laser Stimulation Principle

Energy deposited by the laser stimulation will locally alter the IC electric properties

PLS - Photoelectric Laser Stimulation

- Wavelength < 1100nm for Silicon</p>
 - Carrier generation (e⁻, h⁺)
 - Local temperature increase

■ Additional currents are induced due to the e⁻-h⁺ separation by the internal electric fields

Dynamic perturbations of PLS

- Perturbation of the illuminated gates dynamic behavior
 - Defective gates or weakness design will be highlighted
 - Global effect on the IC functionality can be positive or negative

6

TLS - Thermal Laser Stimulation

- Wavelength > 1100nm for Silicon
 - No e⁻,h⁺ generation
 - Local temperature increase
- 1°: Resistance variation

Resistance

Temperature variation

TLS - Thermal Laser Stimulation

- Wavelength > 1110nm for Silicon
- 2°: Seebeck effect
 - **Increase of the junction temperature**
 - Thermal gradient

Dynamic perturbations of TLS

- Heat variation will affect the perturbation of resistive defect
 - Degradation or compensation can be observed
- Heat variation will alter the dynamic behavior of active areas
 - Defective gates and weakness design can be highlighted

Dynamic Laser Stimulation principle

Study of the IC functionality under laser stimulation

■ The laser stimulation can switch the IC functionality from:

- + Pass -> Fail
- Or, Fail -> Pass

[RIL, LADA, DLS, SDL, ...]

P.C.

ctrl & display

11

- IC activation and test are coupled with LSM:
 - ✓ Functionality is directly on the IC (Output pin, flag, BIST, ScanChain)
 - ✓ Dedicated application board
 - ✓ ATE with dedicated functions and pins

Power, CLK, Ctrl, ...

Pass/Fail mappings application sample – Soft Defect localization

- Characterization of commercial IC
 - Functional evolution during aging as function of the IC temperature

D-TLS is performed close to the functional temperature limit

Pass/Fail mappings application sample – Soft Defect localization

- Basic DLS setup could be "fast" to implement
 - Synchronization options are available on the majority of the LSM
- Results are "simple" and "easier" to exploit (P -> F or F -> P)
- Physical defect or design weakness can be isolated
- Need to accurately control the IC environment
 - Temperature, Voltages, Power, ...
- Need to reduce the tests sequences length
 - Not always easy with BIST, Scan Chain, specific power up, etc.
- Weak sensitivity could be hidden
- Relative variations can not be easily highlighted

Multi levels mapping - DLS through parametric analysis

- Pass / Fail mappings limitations can be avoided thought the implementations of parametric analysis:
 - Direct measurements of one or more electrical parameters:
 - Current,
 - Voltage,
 - Time,
 - Frequency,
 - Noise,
 - Etc...

Any parameter related to the IC under test functionality

Multi levels mapping - DLS through parametric analysis

Possible application for failure analysis or design debug

D-PLS with SIL

Application sample: FA on mixed mode devices

Multi levels mapping - DLS through parametric analysis

- High quantity of information about IC sensitivity in one mapping
 - More information about IC and defects
 - Open the access to IC and structures characterization
- Defect localization can be obtained without pass to fail transition
 - We can avoid specific or long power up sequence
- Data most difficult to interpret
 - Use of simulation and/or golden device are generally required
- Setups are more complex to implement, maintain and reproduce
 - Need fast and accurate measurements
 - Synchronization with laser beam position can be difficult

DLS with modulated laser

- "Time Resolved DLS" "Full DLS"
 - Selection of the illuminated vectors or sequence
 - To avoid the perturbation of the initial or power up sequences
 - Accurate selection of the illuminated edge or vector
 - Pulse width around 5ns with high repetition rate (some MHz)

- Avoid failure not related to the defect
- Identification of the root cause and not the consequences

Conclusion

- DLS extend the application field of laser stimulation
 - Defect and weakness localization for IC with "soft defect"
 - PLS and TLS (resistive defect, interconnections, junction issues, ...)
 - Application possible for digital, analog and mixed mode ICs
 - Application for failure analysis or design debug
 - DLS is complementary to SLS and Emission Microscopy techniques
- DLS gives the access to structures characterization
 - Identification of weakness sites, comparison of concurrent designs
 - Help during aging process, can highlight and follow structures evolutions
- Actual developments and next steps
 - Modulation of the laser source (Time resolved DLS, LSM / ATE coupling)
 - Pulsed laser to access at different perturbations modes