

# Magnetic Field Imaging Magma

EUFANET meeting October 8, 2003



# Magnetic Field Imaging

- Imaging approaches that Neocera is presently using
  - SQUID
  - Fibre/SQUID
  - Magnetoresistance
- Application space
  - Boards Packages (Flip-chip, stacked die, etc.) ICs (wafers)
  - Shorts Resistive Opens Current leakage Logic failures
  - Resolution from 10s of microns to sub-micron
  - Current sensitivity down to 100s of nA
  - Working distances from > 1mm to < 100 nm</li>



# System Platform





### SQUID at Package-Level (wire bond)

#### Good Part





#### **Bad Part**



#### Current: 1 mA Distance: 1500 µm



## SQUID at Package-Level (C4 bump)

Current: 125 µA Distance: 450 µm

Current: 8.8 µA Distance: 450 µm





## SQUID at Die-Level (back-side)







## SQUID at Die-Level (front-side)





## GMR at Die-Level (front-side)

**Optical** 



#### **Current Density**



#### Overlay





## GMR at Die-Level (wafer part using probes)





# Performance of Magnetic Sensors





# Comparison between sensors

- SQUID
  - Most sensitive
  - Ideal for large working distances  $\geq$  100 µm
  - Localize defects to 3 µm
- Magnetoresitive (GMR)
  - Less sensitive than SQUID
  - Good for short working distances of a few microns
  - Sub-micron resolution when very close
- Fibre/SQUID
  - Less sensitive than SQUID, but can be better than GMR
  - Good for short working distances of a few microns
  - Natural high aspect ratio of tip is good for working in cavities
  - Sub-micron resolution when very close



# Implementation Model



- Coarse scan with SQUID to isolate component
- If defect is in the die, then thin the die and fine scan with SQUID
- Locally open a cavity (laser; FIB)
- Scan with magnetoresistive sensor or fibre/SQUID.