NECOERA

Magnetic Field Imaging Macima

EUFANET meeting

Magnetic Field Imaging

- Imaging approaches that Neocera is presently using
- SQUID
- Fibre/SQUID
- Magnetoresistance
- Application space
- Boards - Packages (Flip-chip, stacked die, etc.) - ICs (wafers)
- Shorts - Resistive Opens - Current leakage - Logic failures
- Resolution from 10s of microns to sub-micron
- Current sensitivity down to 100s of nA
- Working distances from > 1 mm to $<100 \mathrm{~nm}$

NECOERA

System Platform

NECDERA

SQUID at Package-Level (wire bond)

Good Part
Bad Part

Current: 1 mA Distance: $1500 \mu \mathrm{~m}$

SQUID at Package-Level (C4 bump)

Current: $125 \mu \mathrm{~A}$ Distance: $450 \mu \mathrm{~m}$

Current: $8.8 \mu \mathrm{~A}$ Distance: $450 \mu \mathrm{~m}$

NECDERA

SQUID at Die-Level (back-side)

NECOERA

SQUID at Die-Level (front-side)

Optical Current Density

NECOERA

GMR at Die-Level (front-side)

NECOERA

GMR at Die-Level (wafer part using probes)

Optical Image

Current Image

$0.3 \mu \mathrm{~m}$ lines with $0.3 \mu \mathrm{~m}$ spacing $I=500 \mu \mathrm{~A}$

NECCDERA

Performance of Magnetic Sensors

Comparison between sensors

- SQUID
- Most sensitive
- Ideal for large working distances $\geq 100 \mu \mathrm{~m}$
- Localize defects to $3 \mu \mathrm{~m}$
- Magnetoresitive (GMR)
- Less sensitive than SQUID
- Good for short working distances of a few microns
- Sub-micron resolution when very close
- Fibre/SQUID
- Less sensitive than SQUID, but can be better than GMR
- Good for short working distances of a few microns
- Natural high aspect ratio of tip is good for working in cavities
- Sub-micron resolution when very close

Implementation Model

- Coarse scan with SQUID to isolate component
- If defect is in the die, then thin the die and fine scan with SQUID
- Locally open a cavity (laser; FIB)
- Scan with magnetoresistive sensor or fibre/SQUID.

