

 Magnetic Force Imaging

 O. Crépel^{a,1}, C. Goupil^a, B. Domengès^a

P. Descamps^a, P. Perdu^b, A. Doukkali^a

^aLaMIP, Philips Semiconductors 14079 Caen, France.

^b CNES, 31401 Toulouse, France.

ESREF 2002 EUFANET workshop october 7 th 2002

Laboratoire de Microélectronique ISMRA PHILIPS

Introduction

State of the art of magnetic sensors.

Current mapping system.

Results with AMR and GMR commercial sensors.

FIB improvement.

Conclusion

Olivier CREPEL

Laboratoire de Microélectronique ISMRA PHILIPS


<u>*Aim :</u>

Non destructive FA is more and more required.

Different kind of magnetic sensors exist on the market, which present different characteristic.

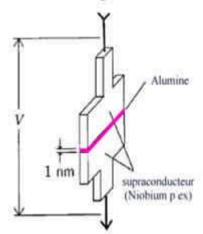
Current mapping using very low field magnetic sensors is explored. <u>*Expected sensibility :</u>

better than 1 μ T for PCB imaging (2.5 mA and 500 μ m). better than 10 nT for IC imaging (5 μ A and 100 μ m).

Olivier CREPEL

Laboratoire de Microélectronique ISMRA PHILIPS

State of the art of magnetic sensors (1)


*More sensible sensor.(noise :<1pT/Hz^{1/2})¹ *Based on superconductor Josephson junctions. *Principle : detection of magnetic flux variation. *Drawbacks :

need cryogenics (liquid He or N_2 *)*

- \implies important working distance
- \implies low spatial resolution.

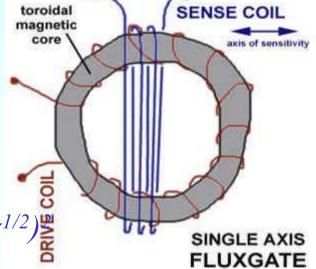
Factor of goodness : sensibility : OK

spatial resolution : bad.

Low Tc Squid 4.2K liquid helium High Tc Squid 77K liquid nitrogen

¹www.neocera.com

Olivier CREPEL



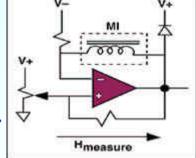
aboratoire de Microélectronique ISMRA PHILIPS

State of the art of magnetic sensors (2) Fluxgate Sensor

*Based on ferromagnetic core surrounded by excitation coil. *Principle : detection of flux variation. *Optimal performance : few nT (noise :2pT/Hz^{1/2}) *Drawbacks : size of the core. *Factor of goodness : sensibility : OK spatial resolution : bad.

² www.stefan-mayer.com

Olivier CREPEL



aboratoire de Microélectronique ISMRA PHILIPS

State of the art of magnetic sensors (3) Giant Magnetoimpedance sensors

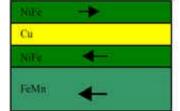
*Based on variation of the magnetic permeability of the element variation of skin depth $\delta = (2\rho/\mu(B)\omega)^{1/2}$ *Principle : variation of the very high Q oscillator. *Noise : $20pT/Hz^{1/2}$

*Drawback : size of the GMI core for acceptable response. <u>*Factor of goodness :</u> sensibility : OK

spatial resolution : bad.

Spatial resolution is a common drawback of the precedent sensors.
 They can provide local magnetic information (packaged circuits).

Olivier CREPEL

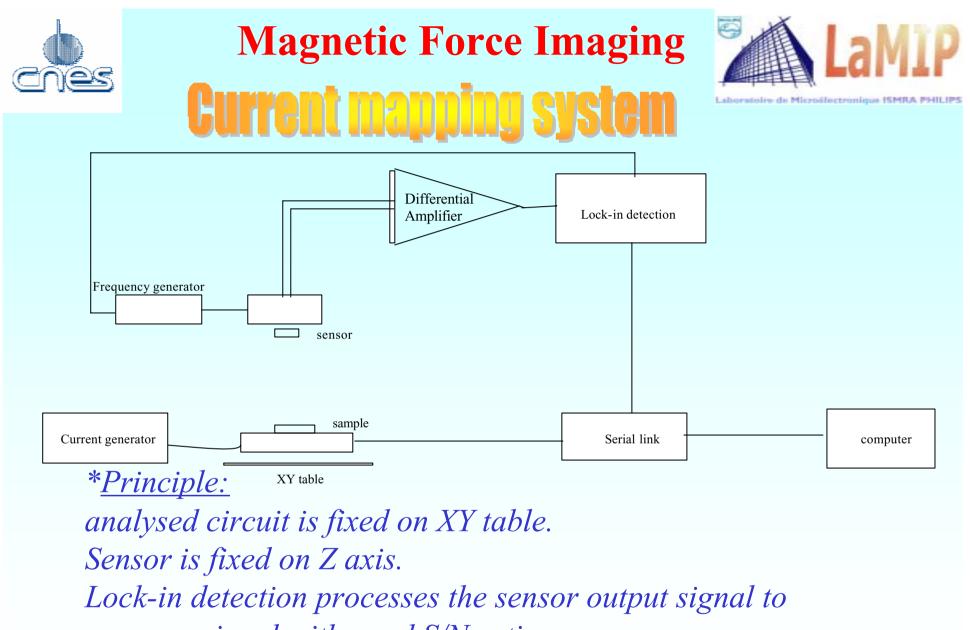

Magnetic Force Imaging State of the art of magnetic sensors (4) Magneto resistive elements AMR and GNR Magneto resistance / Giant Magnetoresistance

*Based on variation of resistance due to spin scattering.

*constituted with NiFe layer on Si substrate for AMR sensors and multilayer materials (Cu and NiFe) for GMR sensors.

*resistance variation is about few percents for AMRsensors and more than 100% for GMR.

*Noise : 10pT/Hz^{1/2} for AMR and 6pT/Hz^{1/2} for GMR. *GMR :constituted by a pinned layer and free layer(NiFe).


1.2nm

 Resistance
 with spin alignment.

 *Compromise between size and sensibility : good factor of goodness.

 Olivier CREPEL

 ESREF 2002 EUFANET workshop

measure signal with good S/N ratio.

Software has been developed to automate measurements.

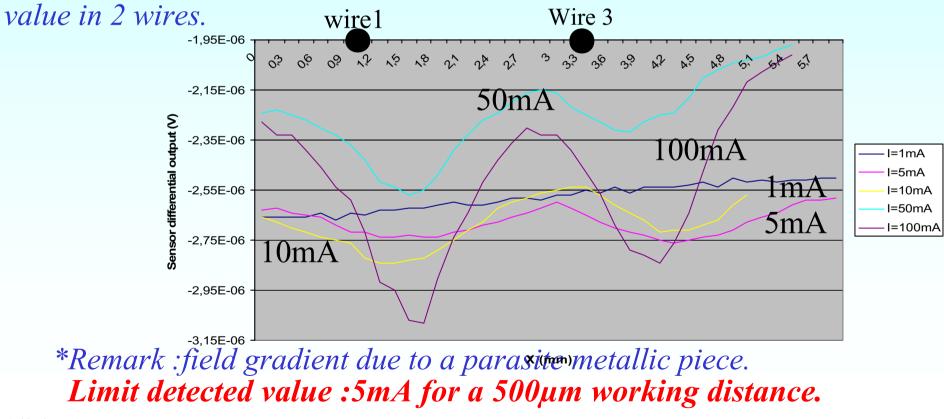
Olivier CREPEL

Magnetic Force Imaging Results with ANR sensor

Vbridge

GND

OUT-


R=600-1200 D

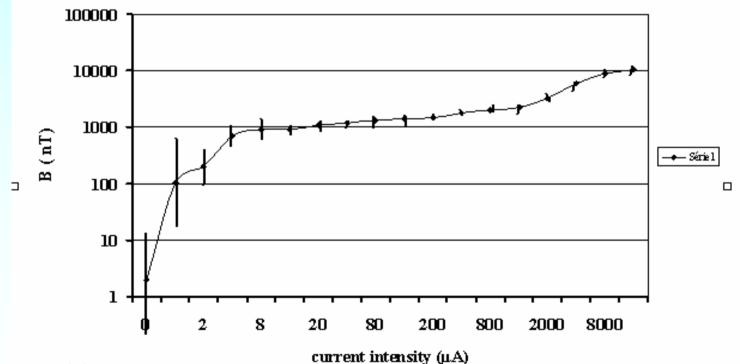
OUT-

(5)

*Used AMR sensor :Honeywell HMC 1001 *Equivalent scheme : Wheastone resistive bridge. *Constitution :4 AMR elements including 2 shielded.

*Principle : moving and measure of sensor output for different current

Olivier CREPEL


Magnetic Force Imaging Results with CNR senso

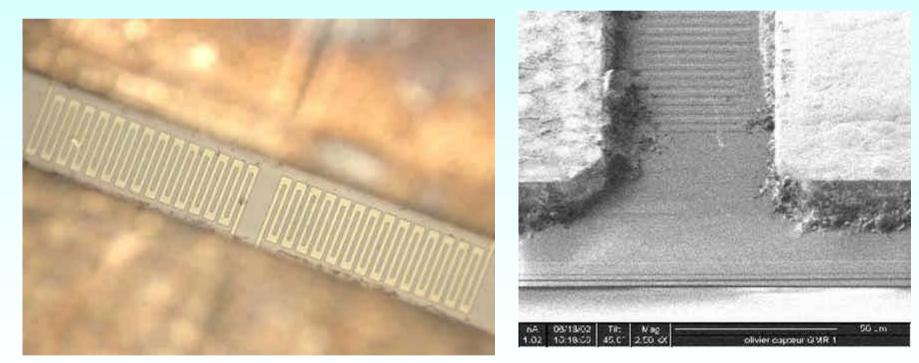
boratoire de Microélectronique ISMRA PHILIPS

*Used GMR sensor :NVE AA002.

**Constitution :4 GMR elements including 2 shielded.* **Principle : measure of sensor output for different current value.*

**Limit observable current : 10µA.*

**Bad spatial (500μm)resolution because of important working distance(500μm).* Olivier CREPEL ESREF 2002 EUFANET workshop



Magnetic Force Imaging FIB improvement (1)

Laboratoire de Microélectronique ISMRA PHILIPS

Sensor size important.=>reduction of active GMR layer size to improve spatial resolution.

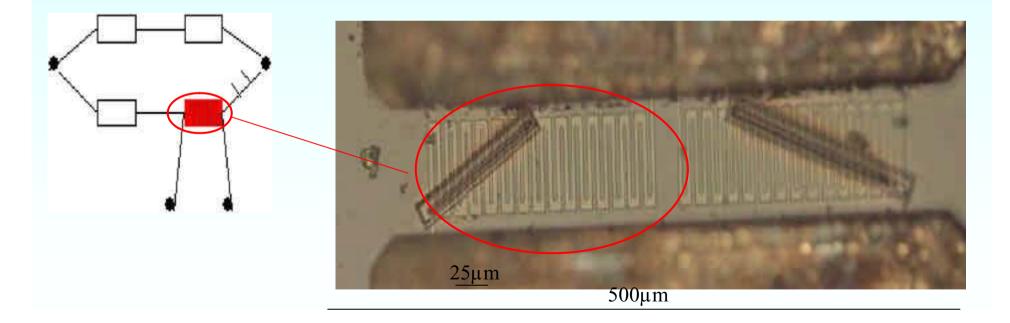
Photography of the GMR active layer

400µm

25µm

Olivier CREPEL

ESREF 2002 EUFANET workshop


12µm

Magnetic Force Imaging FIB improvement (2)

Objective : FIB modification on the GMR layer by depositing Platinum to improve the spatial resolution.

Olivier CREPEL

Laboratoire de Microillectrunique ISMRA PHILIPS

*Good sensibility obtained with GMR sensors.

**New objectives : design new sensors with especially patterned GMR films.*

**Aim* :

Working distance 10µm. Sensor size 10µm. Sensibility 1 nT.

Olivier CREPEL