

Failure Analysis activities

- Why do we need to perform electrical and physical analysis?
 - No production with zero default.
 - Not always direct access to all blocks of current VLSI chip (size, number of transistor, number of IO pins available).
- Analysis is needed at different step of the product life
 - to debug first engineering samples.
 - to analyse rejects after wafer or final test.
 - to analyse customer returns.
 - Reverse engineering

Failure Analysis Process

Non destructive analysis: X-Ray

This non-destructive system allows direct observation of a packaged die through the plastic (Die crack, pop corn, assembly defects, ...)

Acoustic Microscopy

characteristic of ultrasonic

 Z1:Acoustic Impedance of medium1 Z2:Acoustic Impedance of medium2

Z=(Density) X (Sound velocity)

The C-SAM provides non-destructive image of :

- Cracks
- Delamination
- Voids
- Tilt
- Moisture/thermal induced damage

Package de-capsulator

AS2000 allows to open all standard plastic with nitric acid at 70C BG Dcap allows to open new BGA types.

Laser cutter

Cut metal line (AL, Cu, Or) from 0,7µm to 50µm wide, open window in passivation and oxide layer

Perform selective attack using a multiple frequency laser (1064, 532 or 355nm) according to the layer.

Back-Side polishing system

This system allows to open packaged devices in order to perform back side analysis.

Plasma Etcher

Dry etching equipment:

- used gases : O_2 CHF_3 C_2F_6
- RF generator
- UHF generator

This equipment allows to etch silicon nitride and silicon oxydes while preserving the electrical functionality. Classical physical deprocessing is also performed with this equipment.

5 metal level process

Precise control of the etching is ensured by laser interferometry end point detection

Photon Emission Microscope

Detection of faint light originating from energetic or trapped charge carriers decaying to a lower energetic state.

Analysis of the location of junction breakdown and current conduction through a damaged oxide.

Front side

Liquid crystal

This equipment allow to detect leakage in ICs looking at small variation of the temperature

Electron Beam Tester

The IDS5000 perform Fault Localisation using CAD-navigation tools coupled to an electron beam

Layout

Netlist

Scope

IC Tester

This Automated Test Equipment is used for digital devices. It allows to set the device in a pre-define state or to activate it

--> 120 IOs - 100MHz - 256K patterns

Micro probing Station

Probes and microscope allow to access internal nodes on de-capsulated devices.

Magnetic Mapping experimental system

AMR and GMR magnetic sensors experimentations

Passive Integrated Components Characterization with GMR magnetic

sensors

Publications: ESREF 2002 - ESREF 2003 - ISTFA 2003

Contact : Olivier.Crepel@Philips.com

Physical Analysis Equipment

Scanning Electron Microscope

Imaging of a surface by means of a scanning focused electron beam.

2.10

Qualitative and quantitative microanalysis (EDX).

XL 40S FEG

FIB applications

Focused Ion Beam

Localised deposition of conducting and/or material removal using a Ga+ ion beam.

Voltage contrast analysis

Voltage contrast analysis could be performed using FIB, MEB or EBeam

Example 1

Example 2